Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.03.574064

ABSTRACT

Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. Surviving mice showed no detectable viral RNA in the brain and minimal neuroinflammation post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and reduced levels of genes associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent T helper 1 prone cellular immune responses and high neutralizing antibodies against Delta and Omicron variants in the periphery for months post-acute infection. Overall, infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long COVID patients and may be useful for future assessment of the efficacy of vaccines and therapeutics against SARS-CoV-2 variants.


Subject(s)
Acute Disease , Ataxia Telangiectasia , Nervous System Diseases , Weight Loss , Nerve Degeneration , COVID-19 , Cognition Disorders
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.10.557047

ABSTRACT

The highly mutated BA.2.86, with over 30 spike protein mutations in comparison to Omicron BA.2 and XBB.1.5 variants, has raised concerns about its potential to evade COVID-19 vaccination or prior SARS-CoV-2 infection-elicited immunity. In this study, we employ a live SARS-CoV-2 neutralization assay to compare the neutralization evasion ability of BA.2.86 with other emerged SARS-CoV-2 subvariants, including BA.2-derived CH.1.1, Delta-Omicron recombinant XBC.1.6, and XBB descendants XBB.1.5, XBB.1.16, XBB.2.3, EG.5.1 and FL.1.5.1. Our results show that BA.2.86 is less neutralization evasive than XBB sublineages. Among all the tested variants, CH.1.1 exhibits the greatest neutralization evasion. In comparison to XBB.1.5, the more recent XBB descendants, particularly EG.5.1 and FL.1.5.1, display increased resistance to neutralization induced by parental COVID-19 mRNA vaccine and a BA.5-Bivalent-booster. In contrast, XBC.1.6 shows a slight reduction but remains comparable sensitivity to neutralization when compared to BA.5. Furthermore, a recent XBB.1.5-breakthrough infection significantly enhances the breadth and potency of cross-neutralization. These findings reinforce the expectation that the upcoming XBB.1.5 mRNA vaccine would likely boost the neutralization of currently circulating variants, while also underscoring the critical importance of ongoing surveillance to monitor the evolution and immune evasion potential of SARS-CoV-2 variants.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.17.516898

ABSTRACT

The BNT162b2 bivalent BA.4/5 COVID-19 vaccine has been authorized to mitigate COVID-19 due to current Omicron and potentially future variants. New sublineages of SARS-CoV-2 Omicron continue to emerge and have acquired additional mutations, particularly in the spike protein, that may lead to improved viral fitness and immune evasion. The present study characterized neutralization activities against new Omicron sublineages BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 after a 4th dose (following three doses of BNT162b2) of either the original monovalent BNT162b2 or the bivalent BA.4/5 booster in individuals >55 years of age. For all participants, the 4th dose of monovalent BNT162b2 vaccine induced a 3.0, 2.9, 2.3, 2.1, 1.8, and 1.5 geometric mean neutralizing titer fold rise (GMFR) against USA/WA1-2020 (a strain isolated in January 2020), BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1, respectively; the bivalent vaccine induced 5.8, 13.0, 11.1, 6.7, 8.7, and 4.8 GMFRs. For individuals without SARS-CoV-2 infection history, BNT162b2 monovalent induced 4.4, 3.0, 2.5, 2.0, 1.5, and 1.3 GMFRs, respectively; the bivalent vaccine induced 9.9, 26.4, 22.2, 8.4, 12.6, and 4.7 GMFRs. These data suggest the bivalent BA.4/5 vaccine is more immunogenic than the original BNT162b2 monovalent vaccine against circulating Omicron sublineages, including BQ.1.1 that is becoming prevalent globally.


Subject(s)
COVID-19 , Seizures
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.08.515725

ABSTRACT

The rapid evolution of SARS-CoV-2 Omicron sublineages mandates a better un-derstanding of viral replication and cross-neutralization among these sublineages. Here we used K18-hACE2 mice and primary human airway cultures to examine the viral fit-ness and antigenic relationship among Omicron sublineages. In both K18-hACE2 mice and human airway cultures, Omicron sublineages exhibited a replication order of BA.5 [≥] BA.2 [≥] BA.2.12.1 > BA.1; no difference in body weight loss was observed among differ-ent sublineage-infected mice. The BA.1-, BA.2-, BA.2.12.1-, and BA.5-infected mice de-veloped distinguisable cross-neutralizations against Omicron sublineages, but exhibited little neutralization against the index virus (i.e., USA-WA1/2020) or the Delta variant. Surprisingly, the BA.5-infected mice developed higher neutralization activity against heterologous BA.2 and BA.2.12.1 than that against homologous BA.5; serum neutralizing titers did not always correlate with viral replication levels in infected animals. Our results reveal distinct antigenic cartography of Omicron sublineages and support the bivalent vaccine approach.


Subject(s)
Severe Acute Respiratory Syndrome , Weight Loss
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.31.514580

ABSTRACT

The newly emerged SARS-CoV-2 Omicron BQ.1.1, XBB.1, and other sublineages have accumulated additional spike mutations that may affect vaccine effectiveness. Here we report neutralizing activities of three human serum panels collected from individuals 1-3 months after dose 4 of parental mRNA vaccine (post-dose-4), 1 month after a BA.5-bivalent-booster (BA.5-bivalent-booster), or 1 month after a BA.5-bivalent-booster with previous SARS-CoV-2 infection (BA.5-bivalent-booster-infection). Post-dose-4 sera neutralized USA-WA1/2020, BA.5, BF.7, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 SARS-CoV-2 with geometric mean titers (GMTs) of 1533, 95, 69, 62, 26, 22, and 15, respectively; BA.5-bivalent-booster sera improved the GMTs to 3620, 298, 305, 183, 98, 73, and 35; BA.5-bivalent-booster-infection sera further increased the GMTs to 5776, 1558,1223, 744, 367, 267, and 103. Thus, although BA.5-bivalent-booster elicits better neutralization than parental vaccine, it does not produce robust neutralization against the newly emerged Omicron BA.2.75.2, BQ.1.1, and XBB.1. Previous infection enhances the magnitude and breadth of BA.5-bivalent-booster-elicited neutralization.


Subject(s)
Infections , COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.10.503531

ABSTRACT

The SARS-CoV-2 virus is the causal agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19). There is an urgent need for potent, specific antiviral compounds against SARS-CoV-2. The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses, and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, non-covalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC 50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment. One-Sentence Summary A oral non-covalent inhibitor of 3C-like protease effectively inhibits SARS-CoV-2 replication.


Subject(s)
COVID-19
7.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1939987

ABSTRACT

Objectives Wuhan is the city where coronavirus disease (COVID-19) was first reported and developed into a pandemic. However, the impact of the prolonged COVID-19 pandemic on medical staff burnout remains limited. We aimed to identify the prevalence and major determinants of burnout among medical staff 1 year after the beginning of the COVID-19 pandemic in Wuhan, China. Materials and Methods A total of 1,602 medical staff from three hospitals in Wuhan, China, were included from November 1–28, 2021. Chi-square tests were conducted to compare the prevalence of burnout across groups based on sociodemographic and professional characteristics. A multivariate analysis was performed using a forward stepwise logistic regression model. Results Approximately 37.39% of the medical staff experienced burnout 1 year after COVID-19 pandemic. Emotional exhaustion (EE) was the most common symptom of burnout, with 1,422 (88.76%) participants reporting a severe EE. Burnout was associated with insufficient social support and “neutral” or “dissatisfied” patient-physician relationships. Respondents who participated in the care of COVID-19 patients had a higher risk of burnout symptoms than those who did not participate. In particular, mental resilience was negatively associated with burnout among the medical staff. Conclusion Nearly two-fifths of the participants had symptoms of burnout, with reduced personal accomplishment being the predominant symptom 1 year after COVID-19. Healthcare organizations should regularly measure and monitor burnout among the medical staff. In addition, creating positive work environments and improving the mental resilience of medical staff may be effective ways to reduce burnout.

8.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1910932.v1

ABSTRACT

Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we performed a genome-wide CRISPR dropout screen and integrated analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-seq, and host-virus proteins or protein/RNA interactome. This study has uncovered many host factors that were missed by previous studies, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulated viral entry and/or replication. The cohesin complex was also identified as a novel anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discovered an anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which was up-regulated and harbored genetic variations linked to the COVID-19 patients with severe symptoms. Our results provide a resource for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.


Subject(s)
COVID-19
9.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.29.502055

ABSTRACT

Since the initial emergence of SARS-CoV-2 Omicron BA.1, several Omicron sublineages have emerged, leading to BA.5 as the current dominant sublineage. Here we report the neutralization of different Omicron sublineages by human sera collected from individuals who had distinct mRNA vaccination and/or BA.1 infection. Four-dose-vaccine sera neutralize the original USA-WA1/2020, Omicron BA.1, BA.2, BA.212.1, BA.3, and BA.4/5 viruses with geometric mean titers (GMTs) of 1554, 357, 236, 236, 165, and 95, respectively; 2-dose-vaccine-plus-BA.1-infection sera exhibit GMTs of 2114, 1705, 730, 961, 813, and 274, respectively; and 3-dose-vaccine-plus-BA.1-infection sera show GMTs of 2962, 2038, 983, 1190, 1019, and 297, respectively. Thus, 4-dose-vaccine elicits the lowest neutralization against BA.5; 2-dose-vaccine-plus-BA.1-infection elicits significantly higher GMTs against Omicron sublineages than 4-dose-vaccine, and 3-dose-vaccine-plus-BA.1-infection elicits slightly higher GMTs (statistically insignificant) than the 2-dose-vaccine-plus-BA.1-infection. Our results support the inclusion of the BA.5 spike for future vaccine booster doses.

10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.05.494889

ABSTRACT

Distinct SARS-CoV-2 Omicron sublineages have evolved showing increased fitness and immune evasion than the original Omicron variant BA.1. Here we report the neutralization activity of sera from BNT162b2 vaccinated individuals or unimmunized Omicron BA.1-infected individuals against Omicron sublineages and Deltacron variant (XD). BNT162b2 post-dose 3 immune sera neutralized USA-WA1/2020, Omicron BA.1-, BA.2-, BA.2.12.1-, BA.3-, BA.4/5-, and XD-spike SARS-CoV-2s with geometric mean titers (GMTs) of 1335, 393, 298, 315, 216, 103, and 301, respectively; thus, BA.4/5 SARS-CoV-2 spike variant showed the highest propensity to evade vaccine neutralization compared to the original Omicron variants BA.1. BA.1-convalescent sera neutralized USA-WA1/2020, BA.1-, BA.2-, BA.2.12.1-, BA.3-, BA.4/5-, and Deltacron-spike SARS-CoV-2s with GMTs of 15, 430, 110, 109, 102, 25, and 284, respectively. The low neutralization titers of vaccinated sera or convalescent sera from BA.1 infected individuals against the emerging and rapidly spreading Omicron BA.4/5 variants provide important results for consideration in the selection of an updated vaccine in the current Omicron wave.


Subject(s)
Severe Acute Respiratory Syndrome , Seizures
11.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.12.488092

ABSTRACT

The continuous emergence of SARS-CoV-2 variants with increased transmission and immune evasion has caused breakthrough infections in vaccinated population. It is important to determine the threshold of neutralizing antibody titers that permit breakthrough infections. Here we tested the neutralization titers of vaccinated patients who contracted Delta variant. All 75 patients with Delta breakthrough infections exhibited neutralization titers (NT50) of less than 70. Among the breakthrough patients, 76%, 18.7%, and 5.3% of them had the NT50 ranges of <20, 20-50, and 50-69, respectively. These clinical laboratory results have implications in vaccine strategy and public health policy.


Subject(s)
Hepatitis D , Breakthrough Pain
12.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.30.486409

ABSTRACT

The Omicron SARS-CoV-2 has three distinct sublineages, among which sublineage BA.1 is responsible for the initial Omicron surge and is now being replaced by BA.2 worldwide, whereas BA.3 is currently at a low frequency. The ongoing BA.1-to-BA.2 replacement underscores the importance to understand the cross-neutralization among the three Omicron sublineages. Here we tested the neutralization of BA.1-infected human sera against BA.2, BA.3, and USA/WA1-2020 (a strain isolated in late January 2020). The BA.1-infected sera neutralized BA.1, BA.2, BA.3, and USA/WA1-2020 SARS-CoV-2s with geometric mean titers (GMTs) of 445, 107, 102, and 16, respectively. Thus, the neutralizing GMTs against heterologous BA.2, BA.3, and USA/WA1-2020 were 4.2-, 4.4-, and 28.4-fold lower than the GMT against homologous BA.1, respectively. These findings have implications for vaccine strategy.

13.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.24.485633

ABSTRACT

The newly emerged Omicron SARS-CoV-2 has 3 distinct sublineages: BA.1, BA.2, and BA.3. BA.1 accounts for the initial surge and is being replaced by BA.2, whereas BA.3 is at a low prevalence at this time. Here we report the neutralization of BNT162b2-vaccinated sera (collected at 1 month after dose 3) against the three Omicron sublineages. To facilitate the neutralization testing, we engineered the complete BA.1, BA.2, or BA.3 spike into an mNeonGreen USA-WA1/2020 SRAS-CoV-2. All BNT162b2-vaccinated sera neutralized USA-WA1/2020, BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s with titers of >20; the neutralization geometric mean titers (GMTs) against the four viruses were 1211, 336, 300, and 190, respectively. Thus, the BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s were 3.6-, 4.0-, and 6.4-fold less efficiently neutralized than the USA-WA1/2020, respectively. Our data have implications in vaccine strategy and understanding the biology of Omicron sublineages.

14.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.14.480460

ABSTRACT

We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcriptional regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 ({triangleup}3678). The {triangleup}3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The {triangleup}3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the {triangleup}3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the {triangleup}3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter {triangleup}3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that {triangleup}3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.

15.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.21.476344

ABSTRACT

We report the antibody neutralization against Omicron SARS-CoV-2 after 2 and 3 doses of BNT162b2 mRNA vaccine. Vaccinated individuals were serially tested for their neutralization against wild-type SARS-CoV-2 (strain USA-WA1/2020) and an engineered USA-WA1/2020 bearing the Omicron spike glycoprotein. Plaque reduction neutralization results showed that at 2 or 4 weeks post-dose-2, the neutralization geometric mean titers (GMTs) were 511 and 20 against the wild-type and Omicron-spike viruses, respectively, suggesting that two doses of BNT162b2 were not sufficient to elicit robust neutralization against Omicron; at 1 month post-dose-3, the neutralization GMTs increased to 1342 and 336, respectively, indicating that three doses of vaccine increased the magnitude and breadth of neutralization against Omicron; at 4 months post-dose-3, the neutralization GMTs decreased to 820 and 171, respectively, suggesting similar neutralization decay kinetics for both variants. The data support a three-dose vaccine strategy and provide the first glimpse of the neutralization durability against Omicron.

16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.20.473584

ABSTRACT

The explosive spread of the Omicron SARS-CoV-2 variant underscores the importance of analyzing the cross-protection from previous non-Omicron infection. We developed a high-throughput neutralization assay for Omicron SARS-CoV-2 by engineering the Omicron spike gene into an mNeonGreen USA-WA1/2020 SARS-CoV-2 (isolated in January 2020). Using this assay, we determined the neutralization titers of patient sera collected at 1- or 6-months after infection with non-Omicron SARS-CoV-2. From 1- to 6-month post-infection, the neutralization titers against USA-WA1/2020 decreased from 601 to 142 (a 4.2-fold reduction), while the neutralization titers against Omicron-spike SARS-CoV-2 remained low at 38 and 32, respectively. Thus, at 1- and 6-months after non-Omicron SARS-CoV-2 infection, the neutralization titers against Omicron were 15.8- and 4.4-fold lower than those against USA-WA1/2020, respectively. The low cross-neutralization against Omicron from previous non-Omicron infection supports vaccination of formerly infected individuals to mitigate the health impact of the ongoing Omicron surge.


Subject(s)
COVID-19
17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.22.469576

ABSTRACT

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.


Subject(s)
Inflammation , Lung Diseases
18.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.13.460163

ABSTRACT

BNT162b2-elicited human sera are known to neutralize the currently dominant Delta SARS-CoV-2 variant. Here, we report the ability of 20 human sera, drawn 2 or 4 weeks after two doses of BNT162b2, to neutralize USA-WA1/2020 SARS-CoV-2 bearing variant spikes from Delta plus (Delta-AY.1, Delta-AY.2), Delta-{Delta}144 (Delta with the Y144 deletion of the Alpha variant), Lambda, and B. 1.1.519 lineage viruses. Geometric mean plaque reduction neutralization titers against Delta-AY.1, Delta-AY.2, and Delta-{Delta}144 viruses are slightly lower than against USA-WA1/2020, but all sera neutralize the variant viruses to titers of [≥]80. Neutralization titers against Lambda and B. 1.1.519 variants and against USA-WA1/2020 are equivalent. The susceptibility of Delta plus, Lambda, and other variants to neutralization by the sera indicates that antigenic change has not led to virus escape from vaccine-elicited neutralizing antibodies and supports ongoing mass immunization with BNT162b2 to control the variants and to minimize the emergence of new variants.

19.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.02.458740

ABSTRACT

The rapid evolution of SARS-CoV-2 mandates a better understanding of cross-protection between variants after vaccination or infection, but studies directly evaluating such cross-protection are lacking. Here we report that immunization with different variant spikes elicits distinct neutralizing kinetics and magnitudes against other SARS-CoV-2 variants. After immunizing hamsters with wild-type or mutant SARS-CoV-2 bearing variant spikes from Alpha, Beta, Gamma, or Epsilon, the animals developed faster and greater neutralization activities against homologous SARS-CoV-2 variants than heterologous variants, including Delta. The rank of neutralizing titers against different heterologous variants varied, depending on the immunized variant spikes. The differences in neutralizing titers between homologous and heterologous variants were as large as 62-, 15-, and 9.7-fold at days 14, 28, and 45 post-immunization, respectively. Nevertheless, all immunized hamsters were protected from challenges with all SARS-CoV-2 variants, including those exhibiting the lowest neutralizing antibody titers. The results provide insights into the COVID-19 vaccine booster strategies.


Subject(s)
COVID-19
20.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-540721.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve around the world, generating new variants that are of concern based on their potential for altered transmissibility, pathogenicity, and coverage by vaccines and therapeutics. Here we report that 20 BNT162b2 vaccine-elicited human sera neutralize engineered SARS-CoV-2 with a USA-WA1/2020 genetic background (a virus strain isolated in January 2020) and spike glycoproteins from the newly emerged B.1.617.1 (first identified in India) or B.1.525 (first identified in Nigeria) lineages. Geometric mean plaque reduction neutralization titers against the variant viruses, particularly the B.1.617.1 variant, are lower than the titer against USA-WA1/2020 virus, but all sera tested neutralize the variant viruses at titers of at least 40. The susceptibility of the newly emerged B.1.617.1 and B.1.525 variants to BNT162b2 vaccine-elicited neutralization supports mass immunization as a central strategy to end the COVID-19 pandemic across geographies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL